A mathematical explanation of carbon dating and half life

For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time.

This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present.

By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change.

Radiometric dating is also used to date archaeological materials, including ancient artifacts.

It is not affected by external factors such as temperature, pressure, chemical environment, or presence of a magnetic or electric field.

The only exceptions are nuclides that decay by the process of electron capture, such as beryllium-7, strontium-85, and zirconium-89, whose decay rate may be affected by local electron density.

Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied.

All ordinary matter is made up of combinations of chemical elements, each with its own atomic number, indicating the number of protons in the atomic nucleus.

After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product.Potassium-40 is another radioactive element naturally found in your body and has a half-life of 1.3 billion years.Other useful radioisotopes for radioactive dating include Uranium -235 (half-life = 704 million years), Uranium -238 (half-life = 4.5 billion years), Thorium-232 (half-life = 14 billion years) and Rubidium-87 (half-life = 49 billion years).The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay.and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of the Earth itself, and can also be used to date a wide range of natural and man-made materials.

Leave a Reply